Russian Journal of Organic Chemistry, Vol. 40, No. 3, 2004, pp. 407–408. Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 3, 2004, pp. 434–435. Original Russian Text Copyright © 2004 by Avetisyan, Aleksanyan, Ambartsumyan.

## Synthesis of 2-Methyl-4-quinolyl Isothiocyanate

A. A. Avetisyan, I. L. Aleksanyan, and L. P. Ambartsumyan

Erevan State University, ul. Aleka Manukyana 1, Erevan, 375025 Armenia e-mail: organkim@sun.ysu.am

Received December 9, 2003

**Abstract**—A procedure has been developed for the synthesis of substituted 2-methylquinolin-4-ylthiuronium salts by reaction of 2-methyl-4-chloroquinoline with N-substituted thioureas. Alkaline hydrolysis of these salts yields 2-methyl-4-quinolyl isothiocyanate instead of the expected 2-methylquinoline-4-thiol.

In continuation of our studies on the synthesis of new quinoline derivatives, in the present work we examined reactions of 2-methyl-4-chloroquinoline [1] with substituted thioureas (thiourea, N-phenylthiourea, *N-o-* and *-p*-tolylthioureas, and *N-p*-ethoxyphenylthiourea) [2–4]. By heating the reactants at a ratio of 1:1.1 in anhydrous acetone we isolated the coresponding S-(2-methyl-4-quinolyl)thiuronium salts IIa-IIe in almost quantitative yields (Scheme 1). With a view to obtain 2-methylquinoline-4-thiol, salts IIa-IIe were subjected to alkaline hydrolysis. We previously showed that alkaline hydrolysis of 3-alkyl-, 3-allyl-, and 3-(3-chloro-2-butenyl)-2-methyl-4-quinolylthiuronium salts leads to the corresponding 3-substituted quinoline-4-thiols [5, 6]. However, the hydrolysis of salts IIa-IIe unexpectedly resulted in formation of 2-methyl-4-quinolyl isothiocyanate. Presumably, the reaction is accompanied by intramolecular nucleophilic substitution by analogy with the Smiles rearrangement [7–10]. N-Substituted N'-quinolylthioureas thus formed lose ammonia or aromatic amine molecule, yielding 2-methyl-4-quinolyl isothiocyanate (**III**) (Scheme 1).

## **EXPERIMENTAL**

The <sup>1</sup>H NMR spectra were recorded on a Varian Mercury-300 spectrometer from solutions in DMSO- $d_6$ . The IR spectra were measured on a UR-20 instrument from samples dispersed in mineral oil. The purity of the products was checked by TLC on Silufol UV-254 plates; development with iodine vapor. The



 $R = H(a), Ph(b), o-MeC_6H_4(c), p-MeC_6H_4(d), p-EtOC_6H_4(e).$ 

1070-4280/04/4003-0407 © 2004 MAIK "Nauka/Interperiodica"

AVETISYAN et al.

| Comp.<br>no. | Yield,<br>% | mp, °C<br>(decomp.) | Found, % |      |       |       |       | Formula                                             | Calculated, % |      |       |       |       |
|--------------|-------------|---------------------|----------|------|-------|-------|-------|-----------------------------------------------------|---------------|------|-------|-------|-------|
|              |             |                     | С        | Н    | Cl    | Ν     | S     | Formula                                             | С             | Н    | Cl    | N     | S     |
| IIa          | 98          | 170-172             | 52.18    | 4.58 | 14.19 | 16.48 | 12.68 | $C_{11}H_{12}ClN_3S$                                | 52.07         | 4.73 | 14.00 | 16.57 | 12.62 |
| IIb          | 95          | 184–185             | 61.72    | 4.98 | 10.56 | 12.83 | 9.84  | C17H16ClN3S                                         | 61.91         | 4.86 | 10.77 | 12.75 | 9.71  |
| IIc          | 94          | 190–191             | 62.72    | 5.41 | 10.19 | 12.30 | 9.27  | $C_{18}H_{18}ClN_3S$                                | 62.88         | 5.24 | 10.33 | 12.22 | 9.32  |
| IId          | 96          | 210-212             | 62.75    | 5.39 | 10.41 | 12.17 | 9.45  | $C_{18}H_{18}ClN_3S$                                | 62.88         | 5.24 | 10.33 | 12.22 | 9.32  |
| IIe          | 95          | 205-206             | 60.90    | 5.51 | 9.70  | 11.31 | 8.49  | C <sub>19</sub> H <sub>20</sub> ClN <sub>3</sub> OS | 61.04         | 5.35 | 9.50  | 11.24 | 8.57  |

Yields, melting points, and elemental analyses of N-substituted S-(2-methylquinolin-4-yl)thiuronium chlorides IIa-IIe

yields and elemental analyses of compounds **IIa–IIe** are given in table.

**N-Substituted** *S*-(2-methyl-4-quinolyl)thiuronium chlorides IIa–IIe. A mixture of 1.775 g (0.01 mol) of 4-chloro-2-methylquinoline [1] and 0.013 mol of N-substituted thiourea [2] in 50 ml of anhydrous acetone was heated for 5 h on a water bath. The mixture was cooled, and the yellow crystals were filtered off and washed with anhydrous acetone.

2-Methyl-4-quinolyl isothiocyanate (III). An aqueous solution of 0.01 mol of thiuronium salt IIa-IIe was adjusted to pH 10 and was heated for 1.5 h on a water bath. After cooling, the precipitate was filtered off, washed with water, and recrystallized from aqueous alcohol (1:1). mp 160-161°C. Yield 80, 71, 85, 81, and 83% from compounds IIa-IIe, respectively. The filtrate was extracted with benzene, and the extract was evaporated to isolate the corresponding aromatic amines. Samples of III obtained from compounds IIa-IIe showed no depression of the melting point on mixing.  $R_f$  0.70 (alcohol). IR spectrum, v,  $cm^{-1}$ : 930–1250 (N=C=S). <sup>1</sup>H NMR spectrum,  $\delta$ , ppm: 2.60 s (3H, CH<sub>3</sub>), 7.02 s (1H, 3-H), 7.5-8.2 m (4H, H<sub>arom</sub>). Found, %: N 14.07; S 16.11. C<sub>11</sub>H<sub>8</sub>N<sub>2</sub>S. Calculated, %: N 14.00; S 16.00. Hydrochloride: mp 225°C (decomp.); picrate: mp 235°C. Complexes of III with  $CoCl_2$  (blue) and  $CuCl_2$  (yellow) in acetone were also synthesized; mp 255-260 and 215-220°C, respectively.

## REFERENCES

- 1. Fischer, Diepolder, and Wolfel, *J. Prakt. Chem.*, 1925, vol. 109, p. 60.
- Organic Syntheses, Noland, W.E., Ed., New York: Wiley, 1963, collect. vol. 4. Translated under the title Sintezy organicheskikh preparatov, Moscow: Inostrannaya Literatura, 1953, collect. vol. 4, p. 547.
- Organic Syntheses, Horning, E.C., Ed., New York: Wiley, 1955, collect. vol. 3. Translated under the title Sintezy organicheskikh preparatov, Moscow: Inostrannaya Literatura, 1953, collect. vol. 3, p. 49.
- 4. JPN Patent no. 48-40343, 1974; *Ref. Zh., Khim.*, 1974, no. 15N200P.
- 5. Gyul'budagyan, L.V., Van Ngok Khyong, and Asiryan, R.S., Arm. Khim. Zh., 1977, vol. 30, p. 493.
- 6. Gyul'budagyan, L.V., Van Ngok Khyong, and Durgaryan, V.G., Arm. Khim. Zh., 1976, vol. 29, p. 629.
- Warren, L.A. and Smiles, S., J. Chem. Soc., 1930, vol. 597, p. 1327.
- 8. Ingold, C.K., *Structure and Mechanism in Organic Chemistry*, Ithaca: Cornell Univ., 1969, 2nd ed. Translated under the title *Teoreticheskie osnovy organicheskoi khimii*, Moscow: Mir, 1973, p. 325.
- March, J., Advanced Organic Chemistry. Reactions, Mechanisms, and Structure, New York: Wiley, 1985. Translated under the title Organicheskaya khimiya, Moscow: Mir, 1987, vol. 3, p. 114.
- 10. Organic Syntheses, Noland, W.E., Ed., New York: Wiley, 1963, collect. vol. 4, p. 700.